تشخیص نفوذ شبکه با استفاده از الگوریتم‌های یادگیری ماشین: (مجموعه داده UNSW-NB15)

برای شما اطلاعاتی در مورد تشخیص نفوذ شبکه با استفاده از الگوریتم‌های یادگیری ماشین: (مجموعه داده UNSW-NB15) آماده کرده ام مطالعه فرمایید

تشخیص نفوذ شبکه با استفاده از الگوریتم‌های یادگیری ماشین: (مجموعه داده UNSW-NB15)

تشخیص نفوذ شبکه با استفاده از الگوریتم‌های یادگیری ماشین: (مجموعه داده UNSW-NB15)

تشخیص-نفوذ-شبکه-با-استفاده-از-الگوریتم-های-یادگیری-ماشین-(مجموعه-داده-unsw-nb15)در این تحقیق از پنج الگوریتم یادگیری ماشین(جنگل تصادفی، درخت تصمیم‌گیری، رگرسیون لجستیک، k نزدیک‌ترین همسایه و شبکه عصبی مصنوعی) برای تشخیص حمله استفاده شده است. در این تحقیق برای ارزیابی الگوریتم‌ها از مجموعه داده مرجع UNSW-NB15 استفاده شده است. یک مجموعه داده نسبتاً جدید که حاوی مقدار زیادی داده ترافیک شبکه با 9 کلاس از حملات شبکه است. نتایج در محیط ژوپیتر(Jupyter) پایتون نشان می‌دهد که الگوریتم جنگل تصادفی به بالاترین درصد صحت دست یافته است. همچنین از تکنیک نمونه‌برداری بیش از حد اقلیت ترکیبی(SMOTE) برای مشکل عدم تعادل کلاس‌ها استفاده شده است. پس از اعمال SMOTE، الگوریتم جنگل تصادفی با 24 ویژگی انتخاب شده با روش تجزیه و تحلیل مؤلفه‌های اصلی(PCA) به درصد صحت بالاتری دست یافته است.

دانلود فایل

دسته بندی و تگ

  • دسته بندی : کامپیوتر و IT
  • تگ : سیستم تشخیص نفوذ شبکه(NIDS), مجموعه داده UNSW,NB15, الگوریتم‌های یادگیری ماشین, الگوریتم‌های نظارتی, کلاس‌های نامتعادل

برای دریافت اطلاعات بیشتر اینجا کلیک فرمایید